Agronomic Outcomes of Precision Irrigation Management Technologies with Varying Complexity

Author:

Thorp Kelly R.,Calleja Sebastian,Pauli Duke,Thompson Alison L.,Elshikha Diaa Eldin

Abstract

HighlightsCotton yield and water productivity were measured for different precision irrigation management solutions.Agronomic improvements from site-specific irrigation based on spatial FAO-56 crop coefficient data were minor.Thermal remote sensing data from unoccupied aircraft systems were able to identify crop water limitations.Integrated sensing and modeling tools that can achieve intended agronomic outcomes should be prioritized.Abstract. Diverse technologies, methodologies, and data sources have been proposed to inform precision irrigation management decisions, and the technological complexity of different solutions is highly variable. Additional field studies are needed to identify solutions that achieve intended agronomic outcomes in simple and cost-effective ways. The objective of this study was to compare cotton yield and water productivity outcomes resulting from different solutions for scheduling and conducting precision irrigation management. A cotton field study was conducted at Maricopa, Arizona, in 2019 and 2020 that evaluated the outcomes of four management solutions with varying technological complexity: (1) a stand-alone evapotranspiration-based soil water balance model with field-average soil parameters (MDL), (2) using site-specific soil data to spatialize the modeling framework (SOL), (3) driving the model with spatial crop coefficients estimated from an unoccupied aircraft system (UAS), and (4) using commercial variable-rate irrigation technology for site-specific irrigation applications (VRI). Soil water content data and thermal UAS data were also collected but used only in post hoc data analysis. Applied irrigation, cotton fiber yield, and water productivity were statistically identical for MDL and SOL. As compared to MDL, the UAS crop coefficient approach significantly reduced applied irrigation by 7% and 14% but also reduced yield by 5% and 26% in 2019 and 2020, respectively (p = 0.05). In 2019 only, the VRI approach maintained yield while significantly reducing applied irrigation by 8% compared to MDL, and water productivity was significantly increased from 0.200 to 0.211 kg m-3 when one outlier datum was removed (p = 0.05). Post hoc data analysis showed that crop water stress information, particularly from UAS thermal imaging data, would likely benefit the irrigation scheduling protocol. Efforts to develop integrated sensing and modeling tools that can guide precision irrigation management to achieve intended agronomic outcomes should be prioritized and will be relevant whether irrigation applications are site-specific or uniform. Keywords: Cotton, Crop coefficient, Drone, FAO-56, Irrigation scheduling, Remote sensing, Site-specific irrigation, Soil mapping, Unoccupied aircraft system, Variable-rate irrigation, Water stress.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3