Effects of the Stability of Reclaimed Soil Aggregates on Organic Carbon in Coal Mining Subsidence Areas

Author:

Qu Jun Feng,Tan Min,Hou Yu Le,Ge Meng Yu,Wang An Ni,Wang Kun,Shan Jin Xia,Chen Fu

Abstract

Abstract. Reclaimed soil aggregates play a critical role in the accumulation of soil organic carbon. The purpose of this article is to investigate the effects of reclaimed soil aggregate development on organic carbon and explore changes in reclaimed agricultural soil over time in a coal mining subsidence area. Adjacent to the control sample plot (CKN), six sample plots of different reclamation time series: 2001 (R15), 2003 (R13), 2005 (R11), 2007 (R9), 2009 (R7), and 2011 (R5) were collected. Soil analyses included aggregate fractionation and organic carbon. Over time, the distribution characteristics of water-stable aggregates in reclaimed soil gradually improved. The concentration of organic carbon in reclaimed soil increased with aggregate size, and the organic carbon concentration of all aggregates increased with reclamation age. As the number of reclamation years increased, organic carbon also increased, first in the free light fraction (fLF) and later in mineral-bound carbon (mineral-C). Accumulation of organic carbon was related to the development of soil aggregates. The formation and carbon sequestration of reclaimed soil aggregates was consistent with the conceptual model of “aggregate turnover.” The transformation and accumulation of organic carbon was consistent with the physical protection mechanism of soil organic carbon. Keywords: Aggregate, Coal mining subsidence area, Reclaimed soil, Soil organic carbon.

Funder

the research on the technologies for controlling land and water resources in the Huang-Huai-Hai coal mining subsidence area under the Ministry of Land and Resources

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3