Direct Greenhouse Gas Emissions From a Pilot-Scale Aquaponics System

Author:

Kalvakaalva Rohit,Prior Stephen A.,Smith Mollie,Runion G. Brett,Ayipio Emmanuel,Blanchard Caroline,Wall Nathan,Wells Daniel,Hanson Terrill R.,Higgins Brendan T.

Abstract

Highlights Direct greenhouse gas (GHG) emissions were measured in a decoupled aquaponics system. Solids concentration predicted methane emissions in the clarifier system. Lower pH in the plant system increased N2O emissions. Higher fish feeding rate increased CO2 and N2O emissions in the plant production system. Roughly half of direct GHG emissions were offset by carbon uptake during plant growth. Abstract. Agricultural production systems are known to be large contributors to global greenhouse gas (GHG) emissions and many studies have focused on the mitigation of GHG emissions from open-field and other traditional crop production practices. Little attention has been given to direct emissions from non-traditional production systems such as aquaponics. Here we determine direct GHG emissions (CO2, CH4, N2O) from a pilot-scale biofloc, decoupled aquaponics facility. We also determine how emissions from unit operations differ based on a set of environmental and operational parameters e.g. temperature, feeding rate, suspended solids, plant height, water flow rate, and nitrate levels. Major unit operations included a biofloc fish tank stocked with tilapia, a solids settling clarification system, and a climate-controlled greenhouse in which cucumber plants were grown in substrate culture. The study was separated into three seasons. In the summer of 2019, different pH treatments for cucumber irrigation water were tested. In the fall of 2019 and winter of 2020, emissions from perlite versus pine bark substrates were tested during cucumber production. Measurements indicated that aerial GHG emissions in intensively aerated areas of the fish tank were 4.7 to 46.8 times higher than those in areas with low-intensity aeration. High methane emissions (up to 44.8 g m-2 d-1) from the clarification system indicated anaerobic activity. Results from plant production showed a negative relationship between pH and N2O efflux (p=0.0001) while the choice of plant growth substrate had no significant effect on direct GHG emissions. Overall, carbon sequestration in plants could offset 40% to 62% of direct GHG emissions from the aquaponics system. This study provides insight into operational parameters that affect direct GHG emissions from aquaponics systems and provides data to support life cycle assessments. Keywords: Aquaculture, Carbon dioxide, Hydroponics, Methane, Nitrous oxide.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Biomedical Engineering,Soil Science,Forestry,Food Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3