Effects of Cover Crop and Filter Strips on  Sediment and Nutrient Loads Measured at  the Edge of a Commercial Cotton Field

Author:

Thapa Arjun,Aryal Niroj,Reba Michele L.,Teague Tina Gray,Payne Geoffrey K.,Pieri Anna

Abstract

Highlights Winter cover crops and growing season filter strips were implemented without sacrificing significant land and achieved positive results. Cover crops reduced runoff depth, peak flow rate, sediment, TP, and TN load by 30%, 49%, 43%, 4%, and 7%, respectively. Filter strips reduced runoff depth, peak flow rate, sediment, TP, and TN load by 36%, 49%, 56%, 15%, and 21%, respectively. Abstract. Effective use of conservation practices in agricultural fields can reduce sediment and other pollutant loads entering waterways. In this study, we evaluated the effectiveness of using cover crops and filter strips on sediment and nutrient loss at the edge of paired, 7.83 ha (19.35 ac), commercial cotton fields in the Lower Mississippi River Basin (LMRB) in northeastern Arkansas. Cover crops included winter wheat, black oat, and ryegrass seeded in the winter fallow period, while filter strips included a grassy turn row at the field border and switchgrass transplanted around the drainage pipe at the edge of the treatment field. The field border of the control field was generally free from vegetation. A monitoring system measured discharge and collected composite water samples from rainfall and irrigation runoff events. Water samples were analyzed for phosphate (PO4-P), total phosphorus (TP), nitrate (NO3-N), ammonium (NH4-N), total nitrogen (TN), and suspended sediment concentrations. Data were collected from 2015 to 2020. Baseline data were collected when both fields had similar conservation practices (i.e., no cover crops in 2015 and no filter strips in 2015 and 2016). A comparison of 66 common runoff events between the control and cover crop treatment fields during the non-growing season indicated that the median peak flow and sediment loads were significantly reduced (p < 0.05), with an average reduction of 49% and 43%, respectively. Similarly, a comparison of 55 common runoff events between the control and filter strips treatment fields during the growing season found that the filter strips reduced significantly with average runoff by 36%, peak flow by 49%, and sediment loads by 56% (p < 0.05). Nutrient load reductions by the cover crop and filter strip treatments were not significantly different than by the control (p > 0.05). However, mean PO4-P, TP, NO3-N, NO2-N, NH4-N, and TN loads in the cover crop treatment field were lower than in the control field by 21%, 4%, 9%, 4%, 17%, and 7%, respectively. Similarly, mean PO4-P, TP, NO3-N, NH4-N, and TN loads in the filter strip treatment field were lower than in the control field by 23%, 15%, 11%, 42%, and 21%, respectively. The results demonstrated runoff depth, peak flow rate, nutrients, and sediment load reductions following the implementation of cover crops and filter strips at the commercial field scale. Keywords: Agricultural conservation practices, BMPs, Cotton, Cover crop, Edge-of-field monitoring, Filter strips, Switch grass.

Funder

USDA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3