Comparison of RZWQM2 and DNDC Models to Simulate Greenhouse Gas Emissions under Combined Inorganic/Organic Fertilization in a Subsurface-Drained Field

Author:

Jiang Qianjing,Qi Zhiming,Madramootoo Chandra A.,Smith Ward,Abbasi Naeem A.,Zhang Tiequan

Abstract

HighlightsRZWQM2 was compared with DNDC to predict greenhouse gas emissions.RZWQM2 was applied to simulate the greenhouse gas emissions under manure application.RZWQM2 performed better than DNDC in simulating soil water content and CO2 emissions.Abstract. N management has the potential to mitigate greenhouse gas (GHG) emissions. Process-based models are promising tools for evaluating and developing management practices that may optimize sustainability goals as well as promote crop productivity. In this study, the GHG emission component of the Root Zone Water Quality Model (RZWQM2) was tested under two different types of N management and subsequently compared with the Denitrification-Decomposition (DNDC) model using measured data from a subsurface-drained field with a corn-soybean rotation in southern Ontario, Canada. Field-measured data included N2O and CO2 fluxes, soil temperature, and soil moisture content from a four-year field experiment (2012 to 2015). The experiment was composed of two N treatments: inorganic fertilizer (IF), and inorganic fertilizer combined with solid cattle manure (SCM). Both models were calibrated using the data from IF and validated with SCM. Statistical results indicated that both models predicted well the soil temperature, but RZWQM2 performed better than DNDC in simulating soil water content (SWC) because DNDC lacked a heterogeneous soil profile, had shallow simulation depth, and lacked crop root density functions. Both RZWQM2 and DNDC predicted the cumulative N2O and CO2 emissions within 15% error under all treatments, while the timing of daily CO2 emissions was more accurately predicted by RZWQM2 (RMSE = 0.43 to 0.54) than by DNDC (RMSE = 0.60 to 0.67). Modeling results for N management effects on GHG emissions showed consistency with the field measurements, indicating higher CO2 emissions under SCM than IF, higher N2O emissions under IF in corn years, but lower N2O emissions in soybean years. Overall, RZWQM2 required more experienced and intensive calibration and validation, but it provided more accurate predictions of soil hydrology and better timing of CO2 emissions than DNDC. Keywords: CO2 emission, Corn-soybean rotation, Inorganic fertilization, Manure application, N2O emission, Process-based modeling.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3