An Automated Incubator for Rearing Black Soldier Fly Larvae (Hermetia illucens)

Author:

Erbland Patrick,Alyokhin Andrei,Peterson Michael

Abstract

HighlightsBlack soldier fly larvae can be used to convert agricultural wastes into animal feed.A prototype automated incubation system for producing black soldier fly larvae was designed and tested.The system was successful in growing larvae to a harvestable size.The system retained metabolic heat generated by larval and microbial activity.Abstract. Biological conversion of agricultural wastes into animal feed ingredients using larvae of black soldier fly, (Hermetia illucens) is a promising technology that improves the sustainability of agriculture. We designed and tested a prototype automated incubation system for producing black soldier fly larvae. The system consisted of six 50 L plastic bins enclosed on a ventilated metal rack (178 cm high, 66 cm wide). Water was supplied to maintain a moisture level of about 60% in each bin via soaker hoses connected to sensor-activated solenoid valves. The system was successful in maintaining moisture and temperature suitable for larval development and for growing larvae to harvestable size with minimal labor and energy consumption. Biological activity in the bins generated a considerable amount of metabolic heat, most of which was trapped in the substrate in each bin. This heat may be valuable for rearing black soldier fly larvae in areas with cool climates because this species has low tolerance of cold temperatures but challenging in areas with warm climates. Keywords: Biological conversion, Black soldier fly, Metabolic heat generation, Waste management.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3