High-Resolution Pore-Scale Water Content Measurement in a Translucent Soil Profile from Light Transmission

Author:

Orozco-López Enrique,Muñoz-Carpena Rafael,Gao Bin,Fox Garey

Abstract

HighlightsResearch methods are needed to study preferential flow processes at pore scale and high temporal resolution.Novel verification of the light transmission method shows high efficiency to measure rapid transient soil water flow.Recast of a previous physical model allows reliable pore-scale water content quantification in translucent soil profiles.Insights from the light transmission method can inform preferential flow modeling efforts.Abstract. Understanding rapid transient flows in the soil unsaturated zone continues to be a major challenge in hydrology and water quality engineering. For example, surface runoff mitigation by riparian buffers can be limited by rapid transient flows due to the natural propensity of these areas for preferential flow pathways (i.e., caused by roots, wormholes, or wetting/drying cycles). However, current monitoring technologies are limited in their ability to capture rapid soil preferential flows at high spatial and temporal resolutions. Among the state-of-the-art technologies to monitor preferential flow, the light transmission method (LTM) has become a promising tool to quantify pore-scale water contents at a laboratory scale, but its reliability and consistency need further study. The objectives of this study are to recast a previously developed LTM physical model, propose a novel verification method to assess LTM reliability to measure pore-scale water dynamics in laboratory translucent soil profiles, and identify the representative pore radius of translucent soil profiles based on their average number of pores. This study found a high measuring efficiency with LTM for soil moisture and drainage estimations (NSE > 0.98, RMSE < 5.4%), showing its potential for use in laboratory analysis of pore-scale rapid transient water dynamics typically found in preferential flow through the vadose zone. This study also shows that the parameter traditionally associated with the number of pores in a translucent soil profile is a fitting parameter with no direct physical meaning. Keywords: Beer-Lambert law, Fresnel law, Light transmission method, Preferential flow, Riparian buffer, Vadose zone.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3