Development and Prototype Testing of an Agricultural Nozzle Clog Detection Device

Author:

Vong Chin Nee,Larbi Peter Ako

Abstract

HighlightsPrototypes of an agricultural nozzle clog detection system (for 18 nozzles) have been successfully developed.Spray quality characteristics (droplet size, pattern, and coverage) were not significantly affected when testing the device with extended-range nozzles (TeeJet XR8004).Most of the spray quality characteristics were significantly affected when testing the device with ultra low-drift nozzles (John Deere PSULDQ2004).Abstract. Agricultural nozzles are the main components that perform the spraying of agrochemicals, and their proper functionality is a key element for uniform spray application on crops. Because nozzles have small orifices, they can become clogged when there is debris from the agrochemical in the tank. Nozzle clogging during spray application results in poor pest and weed management and increased cost for re-spraying the affected crop row. Measures used to prevent nozzles from clogging include using screens or strainers to filter out debris before it reaches the nozzle tip, as well as performing regular checks on the nozzles. However, nozzle clogging still occurs during spraying despite the precautions taken. Thus, a device that can detect nozzle clogging during spraying is necessary to enable a quicker response that will ensure uniform application across each row of the crop. A novel, patented device for detecting clogged nozzles that is externally attachable to each nozzle on a sprayer boom was developed in the Precision Application Technology Lab at Arkansas State University. The main objective of this article is to present a general description of this prototype nozzle clog detection device and the nozzle clog detection system. Spray droplet size and pattern tests under controlled conditions and spray coverage tests under field conditions were conducted with and without the device to determine if there were significant differences in droplet size, spray pattern, or spray coverage between using and not using the device. The tests demonstrated that this new technology has potential for detecting clogged nozzles without significantly influencing spray quality for extended-range nozzles but not for ultra low-drift nozzles. To increase the reliability of the performance of this new technology, further improvements in the design need to be considered. Keywords: Clogged nozzle, Detection, Droplet size, Prototype device, Spray coverage, Spray pattern.

Funder

USDA-NIFA

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3