Stress Relaxation of Apples at Different Deformation Velocities and Temperatures

Author:

Stropek Zbigniew,Stropek Zbigniew,Golacki Krzysztof,Golacki Krzysztof

Abstract

ABSTRACT. Stress relaxation tests on apples (‘Beni Shogun’ variety) were performed at different velocities in the range of 0.0002 to 1 m s-1 and at three temperatures (2°C, 10°C, and 20°C). The generalized Maxwell model was used to describe the experimental stress relaxation curves. The two relaxation times of the model decreased with an increase in the deformation velocity. The relaxation times were related to the processes of gas and liquid flows in the intercellular spaces. This research showed the critical velocity associated with the weakness of the apple structure to lie between deformation velocities of 0.0002 and 0.002 m s-1, where a rapid decrease in the two relaxation times occurred. An increase in the peak force response with increasing deformation velocity showed the viscoelastic behavior of apple flesh. The equilibrium modulus describing the material condition after deformation was much larger under the quasi-static loading condition than the impact loading condition at all deformation velocities. The temperature did not seem to affect the Maxwell model parameters and peak force response for all deformation velocities under both loading conditions. Keywords: Apple, Generalized Maxwell model, Impact loading, Quasi-static loading, Stress relaxation, Viscoelasticity.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3