Evolution of Phosphine from Aluminum Phosphide Pellets

Author:

Elsayed Sherif,Casada Mark E.,Maghirang Ronaldo G.,Wei Mingjun

Abstract

HighlightsThis study developed a mathematical relationship accounting for the production rate of phosphine.The effect of temperature on phosphine sorption into wheat is described mathematically.A computational fluid dynamics (CFD) model was built to predict the phosphine concentration in fumigated grain.Experiments were conducted to validate the CFD model.Abstract. Phosphine gas (PH3) is widely used as a fumigant for stored product insect infestations due to its relatively low price and the near absence of residual chemical on the grain. Understanding the behavior of phosphine gas inside the fumigated space is crucial to maintaining a lethal dosage and protecting stored grain from subsequent insect damage. Phosphine is available either in gas form or is produced from a solid material, as pellets or tablets, that reacts with water in the air. The solid form is the most commonly used; however, limited information is available on the rate of phosphine gas generated from the solid material. In this study, a mathematical equation was formulated, based on previous studies in the literature, to describe the gas generation rate. This equation was incorporated into a computational model using ANSYS Fluent 19.1, a commercial software for computational fluid dynamics (CFD) analysis. The computational model developed here allows prediction of the phosphine concentration within a fumigated grain bulk. The PH3 sorption was included in the model. The effect of temperature on the sorption rate was investigated based on published data, and the rate change due to temperature was characterized. The gas generated by a single pellet was measured in laboratory experiments in a 0.208 m3 sealed barrel. The measurements confirmed the CFD results with an error of 0.3%, 0.9%, and 7.2% for three different configurations. The deviations seen between the experimental replicates increased the error and show the need for further investigation of the effects of temperature, grain age and history, leakage, and other factors. Keywords: CFD, Evolution rate, Phosphine, Sorption.

Funder

USDA Agricultural Research Service

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3