Author:
Wang Zhenjie,Sun Ke,Du Lihui,Yuan Jian,Tu Kang,Pan Leiqing
Abstract
Abstract. In this study, computer vision was used for the identification and classification of fungi on moldy paddy. To develop a rapid and efficient method for the classification of common fungal species found in stored paddy, computer vision was used to acquire images of individual colonies of growing fungi for three consecutive days. After image processing, the color, shape, and texture features were acquired and used in a subsequent discriminant analysis. Both linear (i.e., linear discriminant analysis and partial least squares discriminant analysis) and nonlinear (i.e., random forest and support vector machine [SVM]) pattern recognition models were employed for the classification of fungal colonies, and the results were compared. The results indicate that when using all of the features for three consecutive days, the performance of the nonlinear tools was superior to that of the linear tools, especially in the case of the SVM models, which achieved an accuracy of 100% on the calibration sets and an accuracy of 93.2% to 97.6% on the prediction sets. After sequential selection of projection algorithm, ten common features were selected for building the classification models. The results showed that the SVM model achieved an overall accuracy of 95.6%, 98.3%, and 99.0% on the prediction sets on days 2, 3, and 4, respectively. This work demonstrated that computer vision with several features is suitable for the identification and classification of fungi on moldy paddy based on the form of the individual colonies at an early growth stage during paddy storage. Keywords: Classification, Computer vision, Fungal colony, Feature selection, SVM.
Funder
National Natural Science Foundation of China
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献