Inverse AERMOD and SCIPUFF Dispersion Modeling for Farm-Level PM10 Emission Rate Assessment

Author:

Cheng Bin,Shiv Kumar Aditya Padavagod,Wang-Li Lingjuan

Abstract

HighlightsAERMOD and SCIPUFF were employed to back-calculate farm-level PM10 emission rates based on inverse modeling.Both AERMOD and SCIPUFF did not capture the diurnal and seasonal variations of farm-level PM10 emission rates.AERMOD modeling results were affected by wind speed, with higher wind speed leading to higher emission rates.Higher numbers of receptors and PM10 measurements with greater time resolution may be recommended in the future.Abstract. Air pollutant emissions from animal feeding operations (AFOs) have become a serious concern for public health and ambient air quality. Particulate matter with aerodynamic equivalent diameter less than or equal to 10 µm (PM10) is one of the major air pollutants emitted from AFOs. To assess the impacts of PM10 emissions from AFOs, knowledge about farm-level PM10 emission rates is needed but is challenging to obtain through field measurements. The inverse dispersion modeling approach provides an alternative way to estimate farm-level PM10 emission rates. In this study, two dispersion models, AERMOD and SCIPUFF, were employed to back-calculate farm-level PM10 emission rates based on hourly PM10 concentration measurements at four downwind locations in the vicinity of a commercial egg production farm in the southeast U.S. Onsite meteorological data were simultaneously recorded using a 10 m weather tower to facilitate the dispersion modeling. The modeling results were compared with PM10 emission measurements from two layer houses on the farm. Single-area source, double-area source, and double-volume source were used in AERMOD, while only single-point source was used in SCIPUFF. The inverse modeling results indicated that both SCIPUFF and AERMOD did not capture the diurnal and seasonal variations of the farm-level PM10 emission rates. In addition, the AERMOD modeling results were affected by wind speed, and higher emission rates may be predicted at higher wind speeds. The single-point source for SCIPUFF, the plume rise simplification for AERMOD, and insufficient concentration measurement resolution in response to temporal changes in wind direction may have added uncertainties to the modeling results. The results of this study suggest that more receptors covering more representative downwind locations should be considered in future modeling for farm-level emissions assessment. Moreover, ambient data collection with greater time resolution (e.g., less than one hour) is recommended to capture diurnal and seasonal patterns more rigorously. Only in this way can researchers achieve a better understanding of the effectiveness of inverse dispersion modeling for estimation of pollutant emission rates. Keywords: AERMOD, Animal feeding operations, Egg production, Farm-level emission rate, Inverse dispersion modeling, PM10, SCIPUFF.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3