Assessing the Impact of Temporal Resolution Using BSM1 on the Performance of Machine Learning

Author:

O WonkiORCID,Ki SeoJinORCID,Triolo Jin MiORCID,Shin Seung GuORCID

Abstract

Objectives : This study aims to establish efficient strategies for data-driven operational management by examining the variations in machine learning modeling outcomes and data characteristics based on data acquisition intervals and methods.Methods : The BSM1 was used to simulate wastewater treatment facilities and to generate influent and effluent water quality data at 15-minute intervals. The generated data was processed by volume reduction through down sampling and data characteristic observation via resampling techniques, including up sampling through interpolation. Subsequently, the study involved a comparative analysis of the performance of 30 machine learning models built with the down sampled data.Results and Discussion : As data acquisition interval increased (i.e., down sampling progressed), <i>R</i><sup>2</sup> decreased and RMSE increased. When using the mean value as a representation, data accuracy was high, and error loss was minimal. Utilizing the maximum value as a representation helped maintain data characteristics and reduce information loss. Simple interpolation methods did not yield improved data accuracy. Furthermore, with wider data acquisition intervals, the practical predictive performance of machine learning models decreased, and the models experienced a sharp decline in performance when data became insufficient.Conclusion : For models requiring the ability to detect changes rather than accuracy, utilizing the maximum value over a specific period proves to be effective. The measurement interval of data emerges as a significant factor affecting the performance of machine learning models, with models developed under different measurement intervals often failing to demonstrate the expected performance. In this study, we have implemented all stages of data preprocessing, classification, training, and validation using LabVIEW, confirming the potential for integrating data analysis processes into LabVIEW, a widely used platform in the fields of control and measurement.

Funder

National Research Foundation of Korea

Publisher

Korean Society of Environmental Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3