Adsorption behaviors of modified clays prepared with structurally different surfactants for anionic dyes removal

Author:

Choi Nayoon,Son Yeongkyun,Kim Tae-Hyun,Park YuriORCID,Hwang YuhoonORCID

Abstract

In this study, the properties and adsorption behaviors of organoclays synthesized with two structurally different surfactants having the same carbon chain length (hexadecyltrimethylammonium bromide (HDTMAB) and benzyldimethylhexadecylammonium chloride (BDHAC)) were evaluated. The structural properties of the synthesized organoclays were examined using Fourier-transform infrared spectroscopy, zeta potential analysis, X-ray diffraction, and N2 adsorption-desorption test. The modified clays with increased surfactant loadings (from 0.5 CEC to 3 CEC) were prepared to find the optimal surfactant loading. As a result, 1.5 cation exchange capacity (CEC) was found to be the optimal surfactant loading. The organoclay prepared using HDTMAB (H-Bt) exhibited the maximum adsorption capacity of 114.3 mg/g for anionic Orange G dye, which was 1.74 times higher than that of the organoclay prepared using BDHAC (B-Bt). Furthermore, in the presence of a mixture of cationic and anionic dye molecules in water, H-Bt tended to remove more of the cationic target compound than B-Bt (i.e., methylene blue (MB)), suggesting that H-Bt can serve as a more efficient adsorbent for the uptake of environmental contaminants in practical scenarios. Moreover, this study examined the effects of surfactant molecules on the structural properties of organoclays and their adsorption behaviors in the uptake of dye molecules.

Funder

Seoul National University of Science and Technology

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3