Author:
Mecha Achisa C,Onyango Maurice S,Ochieng Aoyi,Momba Maggy NB
Abstract
Microbial water pollution is a key concern leading to waterborne diseases. This study evaluated the disinfection of wastewater using ozonation. The following aspects were investigated: inactivation efficiency against <i>Escherichia coli, Salmonella</i> species, <i>Shigella</i> species, and <i>Vibrio cholerae</i>; modelling of inactivation kinetics using disinfection models; and evaluation of microbial regrowth studies. 99% bacterial inactivation was obtained within 15 min, irrespective of the water matrix, showing the strong oxidizing potential of ozone. The disinfection data were fitted into the log-linear and Weibull models. The survival curves were non-linear and fitted the Weibull model (fractional bias and normalized mean square error equal to 0.0), especially at high bacterial concentrations (10<sup>6</sup> CFU/mL). The inactivation occurred in two stages: an initial rapid stage (15 min) and a final slow stage exhibiting a tailing mechanism (15-45 min) probably as a result of the self-defence mechanisms adopted by the bacteria to limit oxidative stress. Considering the pattern of survival curves, no significant differences (<i>p</i> > 0.05) were observed among the four tested bacterial species; thus showing that ozone was effective against all the bacteria tested. There was minimal bacterial regrowth in the treated samples 24 h after ozone disinfection with reactivation values of 0-5% obtained.
Funder
National Research Foundation
Africa Centre of Excellence II in Phytochemicals
Textile and Renewable Energy
Moi University
Publisher
Korean Society of Environmental Engineering
Subject
Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献