Modeling and optimization of small-scale NF/RO seawater desalination using the artificial neural network (ANN)

Author:

Adda Asma,Hanini Salah,Bezari Salah,Laidi Maamar,Abbas Mohamed

Abstract

The performance of seawater hybrid NF/RO desalination plant including permeate conductivity; permeate flow rate and permeate recovery. Under different feed parameters time, inlet temperature, inlet pressure, inlet conductivity and inlet flow rate were modelled by Artificial Neural Network (ANN) back-propagation based on Levenberg– Marquardt training algorithm. The optimal ANN model had a 5-8-3 architecture with a hyperbolic tangent transfer function in hidden layer and linear transfer function at the output layer. The ability of ANN performed model was compared with multiple linear regression (MLR). The results show that MLR is not satisfactory for predicting the performance of NF/RO hybrid desalination process with a correlation coefficient about 0.6. The trained ANN model has presented a good agreement between the prediction and the experimental data during the training with reasonable statistical metrics values (RMSE, MAE and AARD). The coefficient of determination values for the prediction of permeate conductivity, permeate flow rate and recovery by ANN were 0.969, 0.942, and 0.963, respectively. Therefore, the ANN model can successfully predict the performance of NF/RO hybrid seawater desalination plant.

Funder

Algerian Ministry of Higher Education and Scientific Research

Laboratory of Biomaterials and Transport Phenomena

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3