Kidney Segmentations Using CNN models

Author:

MANSOUR Mohammed1,DEMİRSOY Mert Süleyman1,KUTLU Mustafa Çağrı1ORCID

Affiliation:

1. SAKARYA UNIVERSITY OF APPLIED SCIENCES

Abstract

For medical diagnostic tests, kidney segmentation from high-volume imagery is an important major. Since 3D medical images need a lot of GPU memory, slices and patches are used for training and inference in traditional neural network variant architectures, which necessarily slows down contextual learning. In this research, Mobile Net and Efficient Net CNN models were trained for segmenting human kidney images generated from The Human Biomolecular Atlas Program (HuBMAP). The purpose of this work is to evaluate the effectiveness of different strategies for Glomeruli identification in order to solve the issue. The high size images were decoded to be fitted and trained in the models first, then the CNN models were trained. The CNN models result show that the Efficient Net has the highest accuracy rate with 99.49 %, and Mobile Net with 99.33 %.

Publisher

Sakarya University of Applied Sciences

Reference18 articles.

1. “What is HuBMAP”, HuBMAP, Accessed in 10.04.2021, Available [Online]: https://hubmapconsortium.org/what-is-hubmap.

2. “What Is Image Segmentation?”, MathWorks, Accessed in 11.06.2021, Available [Online]: https://www.mathworks.com/discovery/image-segmentation.html.

3. B. De Brabandere, D. Neven, L. Van Gool, “Semantic instance segmentation for autonomous driving”, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Workshops, 2017.

4. R. I. Haque, J. Neubert, “Deep learning approaches to biomedical image segmentation”, Informatics in Medicine Unlocked, 2020.

5. J. Song, L. Xiao, M. Molaei, Z. Lian, “Multi-layer boosting sparse convolutional model for generalized nuclear segmentation from histopathology images”, Knowledge-Based Systems, vol. 176, pp. 40 – 53, 2019.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3