Author:
Mancini F.,Sousa F. S.,Hummel A. D.,Falcão A. E. J.,Yi L. C.,Ortolani C. F.,Sigulem D.,Pisa I. T.
Abstract
SummaryBackground: Mouth breathing is a chronic syndrome that may bring about postural changes. Finding characteristic patterns of changes occurring in the complex musculoskeletal system of mouth-breathing children has been a challenge. Learning vector quantization (LVQ) is an artificial neural network model that can be applied for this purpose.Objectives: The aim of the present study was to apply LVQ to determine the characteristic postural profiles shown by mouth-breathing children, in order to further understand abnormal posture among mouth breathers.Methods: Postural training data on 52 children (30 mouth breathers and 22 nose breathers) and postural validation data on 32 children (22 mouth breathers and 10 nose breathers) were used. The performance of LVQ and other classification models was compared in relation to self-organizing maps, back-propagation applied to multilayer perceptrons, Bayesian networks, naive Bayes, J48 decision trees, k*, and k-nearest-neighbor classifiers. Classifier accuracy was assessed by means of leave-one-out cross-validation, area under ROC curve (AUC), and inter-rater agreement (Kappa statistics).Results: By using the LVQ model, five postural profiles for mouth-breathing children could be determined. LVQ showed satisfactory results for mouth-breathing and nose-breathing classification: sensitivity and specificity rates of 0.90 and 0.95, respectively, when using the training dataset, and 0.95 and 0.90, respectively, when using the validation dataset.Conclusions: The five postural profiles for mouth-breathing children suggested by LVQ were incorporated into application software for classifying the severity of mouth breathers’ abnormal posture.
Subject
Health Information Management,Advanced and Specialized Nursing,Health Informatics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献