Biogenic Iron Oxide Nanoparticles Based on Algal Biofilm Formed in the Wastewater Treatment Plant and Their Dye Removal Performance

Author:

Demirel İlyas Taner1ORCID,Akar Bülent2ORCID,Baltacı Cemalettin1ORCID,Karpuz Ömer1ORCID,Gülbahar Esma1ORCID

Affiliation:

1. GUMUSHANE UNIVERSITY

2. Gümüşhane Üniversitesi

Abstract

In the field of environmental pollution removal, bioremediation plays a crucial role in removing or converting toxic substances from the environment. Bacteria, yeasts, molds, algae, and plants are widely used in bioremediation events. Recently, green-synthesized nanoparticles have also been employed in bioremediation applications. In this study, iron oxide nanoparticles (FeONPs) were synthesized from algal biofilms that are naturally formed in the settling ponds of the Gümüşhane Municipality Wastewater Treatment Plant. These biological nanoparticles were utilized to investigate their adsorption efficiency for water-polluting dyes such as methylene blue (MB), malachite green (MG), and phenol red (PR). The synthesized FeONPs were characterized using Fourier transform infrared spectroscopy (FTIR) scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). To test their efficacy, MB, MG, and PR dye solutions were treated with 5.0, 10.0, and 20 g/L FeONP concentrations. The remaining dye concentrations were quantified with a UV-VIS spectrophotometer after filtration. The results showed that FeONPs obtained from algal biofilms effectively removed MB, MG, and PR, with the highest efficiency observed for PR.

Publisher

Journal of Anatolian Environmental and Animal Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3