CLASSIFICATION OF INSTRUMENT SOUNDS WITH IMAGE CLASSIFICATION ALGORITHMS

Author:

GÜRFİDAN Remzi1ORCID

Affiliation:

1. ISPARTA UYGULAMALI BİLİMLER ÜNİVERSİTESİ YALVAÇ TEKNİK BİLİMLER MESLEK YÜKSEK OKULU

Abstract

Classification of audio files using CNN (Convolutional Neural Network) algorithm is an important application in the field of audio processing and artificial intelligence. This process aims to automatically classify audio files into different classes and can be used in speech recognition, emotional analysis, voice-based control systems and many other applications. The aim of this study is to perform spectrum transformation of instrumental sounds and classify them using image classification algorithms. The dataset contains a total of 1500 data from five different instruments. Audio files were processed, and signal and spectrogram images of each audio file were obtained. DenseNet121, ResNet and CNN algorithms were tested in experimental studies. The most successful results belong to the CNN algorithm with 99.34%.

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

Reference22 articles.

1. 1. Antti E., ‘Automatic musical instrument recognition’, Master Thesis, TAMPERE UNIVERSITY OF TECHNOLOGY, Finland, 2001.

2. 2. Cotton C. V. and Ellis D. P. W., ‘Spectral vs. spectro-temporal features for acoustic event detection’, IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, Pages. 69–72, 2011,

3. 3. Lee H., Largman Y., Pham P., and Ng A. Y., ‘Unsupervised feature learning for audio classification using convolutional deep belief networks’, Adv Neural Inf Process Syst, Vol. 22, 2009.

4. 4. Abdel-Hamid O., Mohamed A. R., Jiang H., Deng L., Penn G., and Yu D., ‘Convolutional neural networks for speech recognition’, IEEE Trans Audio Speech Lang Process, Vol. 22, Issue 10, Pages 1533–1545, 2014.

5. 5. Özbek, M. E., Savacı, F. A., Genelleştirilmiş Gauss yoğunluk modellemesi ile müzik aletlerinin sınıflandırılması. 2007 IEEE 15th Signal Processing and Communications Applications, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3