OPTIMIZATION OF ACCURACY AND SURFACE ROUGHNESS OF 3D SLA PRINTED MATERIALS WITH RESPONSE SURFACE METHOD

Author:

ALBAŞKARA Mehmet1ORCID,TÜRKYILMAZ Serkan1ORCID

Affiliation:

1. AFYON KOCATEPE ÜNİVERSİTESİ

Abstract

3D printers are used frequently for rapid prototyping and production. SLA (stereolithographic) printers, widely used in areas requiring precision production, form the final shape by solidifying the liquid resin with UV rays. In SLA printing, the final figure is created by changing many printing parameters. For this reason, surface integrity and precision of measurements vary. Dimensional accuracy (DA) and surface roughness (SR) outputs should be investigated for precise printing. Therefore, the effects on SR and DA output parameters were investigated by changing the layer height, exposure time, and lift input parameters with the Response Surface Method (RSM). The effective parameters for both outputs are layer height and lift. As the layer height and lift increased, the SR and DA values of the printed parts increased. The predicted results calculated with the regression equations and the experimental results were quite close. Optimum input parameters were found by multi-response optimization. Accordingly, the 8th experiment, 0.05mm-4s-1.5mm, was the best parameter. The difference between the predicted and experimental values for multi-response optimization was 4.28% for SR and 0.27% for DA. Thus, effective parameters for SR and DA have been determined for precision production in SLA printers.

Publisher

International Journal of 3D Printing Technologies and Digital Industry

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MONITORING PEI PRODUCTION PARAMETERS ON A CUSTOM-MADE 3D PRINTER: AN INSIGHT INTO PHYSICAL AND MECHANICAL PROPERTIES;International Journal of 3D Printing Technologies and Digital Industry;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3