Author:
Rushdi Rufaidah Ali,Rushdi Ali Muhammad
Abstract
This paper advocate and demonstrates the utility of the Karnaugh map, as a pictorial manual tool of Boolean algebra, in the exploration of medical problems as exemplified herein by the problem of Fetal Malnutrition (FM). The paper briefly introduces the FM problem, and specifies four metrics or tests used frequently in its study. Clinical data collected about these metrics (as continuous variables or dichotomized versions thereof) are conventionally treated via statistical methods. The Karnaugh map serves as a convenient way for aggregating the set of clinical data available into a pseudo-Boolean function. The map can be used to produce a two-by-two contingency matrix (confusion matrix or frequency matrix) that relates an assessed test or metric to a reference or standard one. Each of these two metrics can be any of the map variables or a function of some or all of these variables. While the map serves in this capacity as a supplement or aid to statistical methods, it is also useful for certain non-statistical methods (specifically Boolean ones). The paper shows how the map entries can be dichotomized via an appropriate threshold for use in Boolean Analysis (BA), which can be conducted despite the lack of a gold standard. The map also implements Qualitative Comparative Analysis (QCA) for the given clinical data. The map variable-handling capability does not pose as a shortcoming for either BA or QCA, since the number of variables involved (not only herein but in other typical medical problems as well) is relatively small. The concepts and methods introduced herein are demonstrated through application to the aforementioned set of clinical data for the FM problem, and can be extended to a wide variety of medical problems.
Publisher
International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram
Subject
General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science
Reference76 articles.
1. Alonzo, T. A., & Pepe, M. S. (1999). Using a combination of reference tests to assess the accuracy of a new diagnostic test. Statistics in Medicine, 18(22), 2987-3003.
2. Alturki, A. M., & Rushdi, A. M. A., (2016). Weighted voting systems: a threshold-Boolean perspective, Journal of Engineering Research, 4(1), 125-143.
3. Anderson, T. W., & Finn, J. D. (1996). Summarizing Multivariate Data: Association between Categorical Variables, Chapter 6 in The New Statistical Analysis of Data. Springer Science & Business Media, pp 177-230
4. Baumgartner, M. (2009). Uncovering deterministic causal structures: a Boolean approach. Synthese, 170(1), 71-96.
5. Baumgartner, M., & Thiem, A. (2017). Often trusted but never (properly) tested: evaluating qualitative comparative analysis. Sociological Methods & Research, Online first 3 May, 2017.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献