Author:
Begum Momotaz,Dohi Tadashi
Abstract
The determination of the software release time for a new software product is the most critical issue for designing and controlling software development processes. This paper presents an innovative technique to predict the optimal software release time using a neural network. In our approach, a three-layer perceptron neural network with multiple outputs is used, where the underlying software fault count data are transformed into the Gaussian data by means of the well-known Box-Cox power transformation. Then the prediction of the optimal software release time, which minimizes the expected software cost, is carried out using the neural network. Numerical examples with four actual software fault count data sets are presented, where we compare our approach with conventional Non-Homogeneous Poisson Process (NHPP) -based Software Reliability Growth Models (SRGMs).
Publisher
International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram
Subject
General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献