Subassembly Detection and Optimal Assembly Sequence Generation through Elephant Search Algorithm

Author:

Bahubalendruni M. V. A. Raju,Sudhakar U.,Lakshmi K. V. Vara

Abstract

Most of the engineering products are made with multiple components. The products with multiple subassemblies offer greater flexibility for parallel assembly operation and also disassembly operation during its end of life. Assembly cost and time can be minimized by reducing the number of assembly levels. In this paper, Elephant search algorithm is used to perform Optimal Assembly Sequence Planning (OASP) in order to minimize the number of assembly levels. Subassembly identification technique is used as an integral part of algorithm to identify the parallel assembly possibilities. The proposed method is implemented on industrial products and a detailed comparative assessment has been made with suitable product illustrations to corroborate the efficiency.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative analysis of constraint and connectivity graph techniques for assembly sequence generation in robotic assembly cells;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-01

2. Industry 4.0 and prospects of circular economy: a survey of robotic assembly and disassembly;The International Journal of Advanced Manufacturing Technology;2022-01-08

3. Ant colony optimization for assembly sequence planning based on parameters optimization;Frontiers of Mechanical Engineering;2021-03-05

4. Industrial-Based Time Performance of Assembly Cell Operators: Impact Assessment Characterization by Discrete-Event Simulation;International Journal of Mathematical, Engineering and Management Sciences;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3