Application of Modified Grey Forecasting Model to Predict the Municipal Solid Waste Generation using MLP and MLE

Author:

Anjum Mohd1,Shahab Sana2,Umar Mohammad Sarosh1

Affiliation:

1. Department of Computer Engineering, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

2. Department of Business & Administration, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Abstract

Grey forecasting theory is an approach to build a prediction model with limited data to produce better forecasting results. This forecasting theory has an elementary model, represented as the GM(1,1) model , characterized by the first-order differential equation of one variable. It has the potential for accurate and reliable forecasting without any statistical assumption. The research proposes a methodology to derive the modified GM(1,1) model with improved forecasting precision. The residual series is forecasted by the GM(1,1) model to modify the actual forecasted values. The study primarily addresses two fundamental issues: sign prediction of forecasted residual and the procedure for formulating the grey model. Accurate sign prediction is very complex, especially when the model lacks in data. The signs of forecasted residuals are determined using a multilayer perceptron to overcome this drawback. Generally, the elementary model is formulated conventionally, containing the parameters that cannot be calculated straightforward. Therefore, maximum likelihood estimation is incorporated in the modified model to resolve this drawback. Three statistical indicators, relative residual, posterior variance test, and absolute degree of grey indices, are evaluated to determine the model fitness and validation. Finally, an empirical study is performed using actual municipal solid waste generation data in Saudi Arabia, and forecasting accuracies are compared with the linear regression and original GM(1,1). The MAPEs of all models are rigorously examined and compared, and then it is obtained that the forecasting precision of GM(1,1) model , modified GM(1,1) model, and linear regression is 15.97%, 8.90%, and 27.90%, respectively. The experimental outcomes substantiate that the modified grey model is a more suitable forecasting approach than the other compared models.

Publisher

International Journal of Mathematical, Engineering and Management Sciences plus Mangey Ram

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3