Recurrence and linear sequences: a three-dimensional visualization with support of GeoGebra software

Author:

Alves Francisco Régis Vieira, ,Pinheiro Carla Patrícia Souza Rodrigues,de Sousa Renata Teófilo,Catarino Paula Maria Machado Cruz, , ,

Abstract

"This article is an excerpt from a master's thesis developed in Brazil, in which we approach recurrent and linear sequences, given some intriguing particularities in their definitions and the scarcity of discussion of this topic in the literature of the History of Mathematics, especially with regard to its geometric representation. Thus, we aim to present the identities of Fibonacci, Lucas, Jacobsthal and Padovan in a three-dimensional visualization with the contribution of GeoGebra software. The research methodology chosen was bibliographical, exploratory in nature, where we have theoretical support in works such as Oliveira and Alves (2019), Silva (2017), Souza and Alves (2018), Vieira and Alves (2020). This research brings as results a set of geometric constructions of the identities of the proposed sequences, in three-dimensional perspective, being a support for future works developed around this theme. GeoGebra was essential in the process of constructing and visualizing the sequences, as it provided strategies for understanding the recurrence relations and the properties of the Fibonacci, Lucas, Jacobsthal and Padovan sequences, through the behavior of the visual representations of these identities."

Publisher

Babes-Bolyai University

Subject

General Agricultural and Biological Sciences

Reference30 articles.

1. "1. Alves, F. R. V. (2017). Didactic Engineering for Jacobsthal's Generalized s-Sequence and Jacobsthal's (s,t)-Generalized Sequence: preliminary and a priori analyzes [Engenharia Didática para a s-Sequência Generalizada de Jacobsthal e a (s,t)-Sequência Generalizada de Jacobsthal: análises preliminares e a

2. priori]. Revista Iberoamericana de Educación Matemática, 51, 83-106. http://funes.uniandes.edu.co/17151/1/Vieira2017Engenharia.pdf

3. 2. Alves, F. R. V. (2022a). Fibonacci, Tribonacci, etc. sequences and the boards [A Sequência de Fibonacci, Tribonacci, etc. e tabuleiros]. Boletim GEPEM (Online), 80, 311-323. DOI: 10.4322/gepem.2022.055

4. 3. Alves, F. R. V. (2022b). Combinatory properties about the Jacobsthal sequence, the notion of the board and some historical notes [Propriedades Combinatórias sobre a sequência de Jacobsthal, a noção de tabuleiro e alguns apontamentos históricos]. Revista Cearense de Educação Matemática, 1, 1-13. DOI: 10.56938/rceem.v1i1.3146

5. 4. Alves, F. R. V., Vieira, R. P. M., Silva, J. G. & Mangueira, M. C. S. (2019). Didactic Engineering for teaching the Padovan sequence: a study of the extension to the field of integers [Engenharia Didática para o ensino da sequência de Padovan: um estudo da extensão para o campo dos números inteiros]. In: Gonçalves, F. A. M. (Ed.). Science Teaching and Mathematics Education [Ensino de Ciências e Educação Matemática]. chapter 2. Atena Editora.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3