Estimation of specific surface area of particles based on size distribution curve

Author:

Ghasemi Yahya1,Emborg Mats2,Cwirzen Andrzej2

Affiliation:

1. Department of Civil, Environmental and Natural Resources Engineering, Luleå Technical University, Luleå, Sweden (corresponding author: )

2. Department of Civil, Environmental and Natural Resources Engineering, Luleå Technical University, Luleå, Sweden

Abstract

Workability in the fresh state is one of the most important factors in design and production of concrete and can be related to the water demand of the mixture, which in addition to other factors is a function of the particle shape of aggregates and binders and their specific surface area. While it is known that the shape of fine particles has a significant effect on the water demand, there are uncertainties regarding how the various shape parameters would affect the specific surface area, mainly because up to now many of the shape parameters have not yet been clearly defined and there are no commonly accepted methods for their measurement and/or estimation. In this research, the actual particle shapes were replaced with regular convex polyhedrons to calculate the total specific surface area using the size distribution curves of the samples. The obtained results indicate that while, in some cases, the assumption of a spherical particle shape leads to an acceptable estimation of the specific surface area when compared with Blaine test results, the specific surface area of powders with more angular particles could be calculated more accurately with the assumption of a polyhedron shape rather than a sphere.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3