Partially saturated tailings sand below the phreatic surface

Author:

Fourie A. B.1,Hofmann B. A.2,Mikula R. J.3,Lord E. R. F.4,Robertson P. K.5

Affiliation:

1. University of the Witwatersrand South Africa

2. formerly University of Alberta Canada

3. Natural Resources Canada

4. Syncrude Canada Ltd

5. University of Alberta Canada

Abstract

An opportunity to re–examine the liquefaction potential of hydraulically placed tailings sand has been provided by the Canadian Liquefaction Experiment (CANLEX). As part of this experiment, undisturbed samples of tailings sand were recovered after freezing the tailings in situ. Examination of undisturbed cores of frozen tailings sand clearly showed that the specimens were not fully saturated. This was confirmed by both physical measurements and laboratory tests in which gas was recovered from thawing specimens and analysed by gas chromatography. The gas was mainly air although a small amount of microbial gas was also present. Cryogenic scanning electron microscopy and confocal laser scanning microscopy were used to further confirm the existence of occluded gas bubbles. Triaxial undrained compression tests were carried out on undisturbed tailings specimens that were not back–saturated prior to shearing, in order to preserve the in–situ degree of saturation. Occluded air bubbles within the tailings sand, even if only in very small percentages by volume, are shown to have a marked effect on the response to undrained loading of the pore pressure within the tailings specimens. It is suggested that the liquefaction potential of tailings sand that could be expected to be contractive under undrained loading may be reduced by the occurrence of occluded gas bubbles within the voids. While it is not possible to quantify these effects accurately until further laboratory testing of both unsaturated and saturated loose tailings specimens has been conducted, this attribute could modify present engineering design. In this respect, obtaining undisturbed samples of granular soil is an important component of evaluating the liquefaction susceptibility of a specific deposit.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3