Effects of sample size on bender-based axial G0 measurements

Author:

Arroyo M.12,Muir Wood D.3,Greening P. D.24,Medina L.25,Rio J.4

Affiliation:

1. Departamento de Ingeniería del Terreno, UPC Barcelona, Spain

2. Formerly Department of Civil Engineering, University of Bristol UK

3. Department of Civil Engineering, University of Bristol UK

4. Department of Civil Engineering, University College London UK

5. ETSICCP, Universidade da Coruña Spain

Abstract

Bender elements are piezoelectric transducers frequently employed for the measurement of the small-strain shear modulus of soils. The measurement is based on transmission of a mechanical signal through a soil sample. A very common set-up involves transmission along the axis of a cylindrical sample, with source and receiver transducers mounted, for instance, in the end platens of a triaxial apparatus. Current test interpretation is generally based on the assumption of plane wave transmission between transducers. However, this model does not explain the heavily distorted transmission usually observed. The result is substantial measurement uncertainty. Although other phenomena do play a role, it is here proposed that a main culprit for signal distortions is sample-size effects due to lateral boundary reflections. To support this hypothesis, results from a series of numerical 3D simulations of the problem are analysed. Velocity estimates obtained from the simulated traces using plane-wave based time and frequency domain methods are compared with the known exact value. Errors in velocity determination are shown to be very important and directly related to lateral boundary influences. Comparison with some experimental data confirms the need to include sample-size effects in a renewed interpretative framework for bender tests.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3