Characterisation of model uncertainties for laterally loaded rigid drilled shafts

Author:

Phoon K.-K.1,Kulhawy F. H.2

Affiliation:

1. Department of Civil Engineering, National University of Singapore

2. School of Civil and Environmental Engineering, Cornell University Ithaca, USA

Abstract

This paper presents a critical evaluation of model factors for laterally loaded rigid drilled shafts (bored piles). Both the lateral or moment limit and hyperbolic capacity are considered to make explicit the dependence of model factors on the criterion for interpreting ‘capacity’ from load test data. Although the hyperbolic capacity may be closest to the theoretical ultimate state or upper bound, results indicate that it generally does not produce a mean model factor of 1. When the measured capacity is interpreted consistently from load test data, the coefficient of variation (COV) appears to remain relatively constant between 30% and 40%. The range of the mean bias for the lateral or moment limit is 0·67 to 1·49, whereas that of the hyperbolic capacity is 0·98 to 2·28. Based on available data, a log-normal probability model appears adequate for reliability analysis. Laboratory-scale load tests conducted in uniform soil deposits prepared under controlled laboratory conditions are ideal for establishing benchmarks on the probable magnitude of uncertainty arising from model idealisations alone. However, the limited range of geometric and geotechnical parameters in a laboratory load test database may not produce a representative mean model factor. A field load test database typically contains more diverse geometric and geotechnical parameters, but it entails an unknown degree of extraneous uncertainties. A comparative study indicates that model statistics are surprisingly robust and appear not to be seriously affected by the above concerns (possibly because of normalisation). Model factors from drained analysis seem to be more variable than those from undrained analysis. A more detailed examination indicates that the higher COV of about 40% for these drained model factors arises because they are not completely random. There are reasons to believe that applying a more complete force system for drained analysis could minimise some of the undesired correlations and reduce the COV to a level comparable to undrained analysis.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3