Analytical solution for soil flushing using PVD system with rectangular pattern

Author:

Zhou X.1,Wang H.-Y.2,Ling D.-S.3,Liu W.4,Ke H.3

Affiliation:

1. PhD Candidate, Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China; School of Civil Engineering and Architecture, NingboTech University, Ningbo, China,

2. Assistant Professor, School of Civil Engineering and Architecture, NingboTech University, Ningbo, China,(corresponding author)

3. Professor, Institute of Geotechnical Engineering, Zhejiang University, Hangzhou, China,

4. Associate Professor, School of Rail Transportation, Soochow University, Suzhou, China,

Abstract

Soil flushing using prefabricated vertical drains (PVDs) is an innovative subsurface remediation technology for contaminated fine-grained soils. An analytical solution is presented to investigate the performance of a PVD-enhanced system arranged in a rectangular pattern for soil remediation. The analytical solution is derived based on a simplified equivalent model in which PVDs are substituted by drain walls. The results of the analytical solution are shown to be roughly consistent with those obtained from the finite-element method. Using the proposed solution, the remediation efficiency for a rectangular layout is demonstrated to be higher than that for a parallel layout. Furthermore, the effects of distance between injection and extraction PVD, injection rate, distribution coefficient, and dispersivity are investigated. Results indicate that a square pattern is the optimal layout of PVDs compared to other rectangular patterns. Increasing the injection rate of individual PVDs is an effective way to improve the remediation efficiency. The increase of distribution coefficient of contaminant leads to a significant increase in the remediation time, and the increase of longitudinal and transverse dispersivity results in a more uniform spatial distribution of contaminant concentration during the flushing process.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3