Numerical study of advective flow through composite liners

Author:

Bannour Hajer1,Goblet Patrick2,Mendes Marianna3,Touze-Foltz Nathalie1

Affiliation:

1. HBAN Unit, Irstea, Antony, France

2. Geosciences Centre, Mines Paris Tech, Fontainebleau, France

3. Arcadis, Marseille, France

Abstract

This study presents numerical simulations of advective flow through a composite geomembrane geosynthetic clay liner (GMB-GCL). In the past, GCLs were considered homogeneous materials, but they actually consist of a special layered composite structure that combines two types of materials, geotextiles and bentonite, which are connected together by various processes. One could imagine that, when the GCL hydrates, the different water-retention properties of the geotextile and the bentonite affect the hydraulic behaviour of engineered systems, including GMB-GCL composite liners. To investigate this question, the advective flow through a composite liner modelled as a GCL and a damaged GMB was numerically simulated to evaluate how the hydraulic properties of the unsaturated geotextile and bentonite influences the temporal evolution of advective flow through composite liners. Results are compared with measured water-retention curves of geotextiles and bentonite. The simulation indicates that the reproduced flow rate is influenced by the desaturation of the geotextile that occurs as the bentonite hydrates. The reduction in flow rate is thus governed by the hydraulic conductivities of the geotextile and the bentonite, both of which vary with degree of saturation.

Publisher

Thomas Telford Ltd.

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Geochemistry and Petrology,Waste Management and Disposal,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3