Effect of bridge design parameters on multi-hazard performance of river-crossing bridges

Author:

Devendiran Dinesh Kumar1,Banerjee Swagata2

Affiliation:

1. Doctoral Researcher, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India

2. Associate Professor, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India (corresponding author: )

Abstract

River-crossing bridges in seismically active regions are typically susceptible to two natural hazards – earthquakes and floods. For such bridges, design parameters related to piers may play major roles in bridge multi-hazard performance. In this study, the same was explored for key bridge design parameters – the aspect ratio and longitudinal reinforcement ratio of piers and the differential ground elevation between multiple bents. The multi-hazard condition in the southeast of Nepal was considered as the test-bed hazard condition. The regional seismic hazard was represented using a suite of earthquakes generated based on regional seismic design spectra. Due to the flood hazard in the region, expected pier scour of investigated bridges was estimated from 100-year flood discharge (including climate change projection) in the Koshi River, Nepal. Three-dimensional finite-element models of the chosen bridges, with and without scour and with ±10% variations in the stated design parameters, were developed. Fragility and risk curves of the bridges were developed and compared in order to assess the relative influence of the design parameters on bridge performance. It was found that the aspect ratio and longitudinal reinforcement ratio of piers can significantly influence the multi-hazard performance of riverine bridges. The findings also demonstrate how design parameters may be revised to perform risk-targeted multi-hazard design of bridges.

Publisher

Thomas Telford Ltd.

Subject

Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Proceedings of the Institution of Civil Engineers - Structures and Buildings;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3