Ultimate lateral resistance of passive piles in non-cohesive soils

Author:

Bellezza I.1ORCID,Caferri L.2ORCID

Affiliation:

1. Università Politecnica delle Marche, Department SIMAU, Ancona, Italy.

2. Universita Politecnica delle Marche, Ancona, Italy.

Abstract

In this paper, a single unrestrained passive pile in a two-layered cohesionless soil is analysed with the aim to evaluate its contribute in terms of resistance at the depth of an assigned sliding surface. The method assumes that the ultimate soil pressure is fully mobilised and increases linearly with depth. Six failure mechanisms are considered and dimensionless values of shear force and bending moment at sliding depth are derived in analytical and graphical form. The maximum shear force computed by the present theory reasonably agrees with data of model tests published in the literature, whereas the maximum bending moment is underestimated. This approach seems to be suitable to be implemented in traditional limit equilibrium methods when pile contribute is considered as an additional resistance. More sophisticated analyses based on an adequate soil constitutive model are requested when pile displacement must be predicted.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3