Durability of silica aerogel cementitious composites – freeze–thaw resistance, water resistance and drying shrinkage

Author:

Zhu Pinghua1,Yu Shuqi2,Cheng Cheng2,Zhao Shanyu3ORCID,Xu Haixun4

Affiliation:

1. Professor, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China

2. Postgraduate student, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China

3. Scientist, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

4. Lecturer, School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu, P. R. China (corresponding author: )

Abstract

Owing to its exceptional physical properties, silica aerogel is regarded as an attractive candidate material for building insulation applications; however, the widespread adoption of silica aerogel is limited by its inherently brittle nature and related sub-micrometre dust release. In this paper, the poor mechanical properties of silica aerogel were improved by combining the silica phase and cementitious materials to reach engineering strong composites and maintain relatively low thermal conductivity. The mechanical properties, durability (freeze–thaw resistance, water resistance and drying shrinkage) and thermal conductivity of the silica aerogel–cement composites were comprehensively studied. The composites show improved mechanical properties as compared to pure silica aerogel, but this decreases with the increase of silica aerogel content. With respect to the durability, surprisingly, the silica aerogel can efficiently improve the frost and water resistance of the composite, which might be benefited by the strong hydrophobicity of the silica aerogel. The optimal performance of the composite is observed at 60 vol.% aerogel loading. The thermal conductivity, compressive strength, flexural strength and bonding force are 0·065 W/(m/K), 3·81 MPa, 2·23 MPa and 0·27 MPa, respectively, and the drying shrinkage of the composite is only 0·12% after 90 d.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3