Coupled experimental assessment of physico-biochemical characteristics of municipal solid waste undergoing enhanced biodegradation

Author:

Fei X.1ORCID,Zekkos D.2ORCID

Affiliation:

1. Ali I. Al-Naimi Petroleum Engineering Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

2. Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.

Abstract

Seven municipal solid waste (MSW) specimens with variable initial waste compositions were biodegraded in large (d = 300 mm, h = 600 mm) laboratory landfill simulators under leachate-recirculation-enhanced anaerobic biodegradation conditions to investigate changes in the biochemical and physical characteristics of solid waste, leachate and biogas during biodegradation. The evolution with time of the monitored characteristics of the three phases was presented and the characteristics empirically correlated. The impact of the initial composition of waste on the biodegradation process was quantified. Although removal of soluble compounds in leachate, and methane (CH4) generation from waste was practically completed after around 300 days, changes in vertical strain, total unit weight and volumetric moisture content of waste continued in decreasing rates even after 1000 days. Methane generation potential (L0) of the waste was correlated to the percentage of biodegradable waste prior to degradation expressed by parameter B0. Maximum methane generation rate (rCH4,max) increased with increasing L0 and maximum soluble chemical oxygen demand in leachate. Final strain (or settlement) of waste due to anaerobic biodegradation (εB,f) increased with increasing B0 and L0. The compression ratio was found to vary during the process, although it is commonly assumed to be constant. The maximum long-term compression ratio increased with increasing εB,f and rCH4,max. The total unit weight at submerged and field capacity states and volumetric moisture content of waste were also dependent on the initial composition and compression (quantified by strain) of waste. The trends presented in this study contribute to the quantitative understanding of coupled processes during enhanced biodegradation of MSW of variable waste composition.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3