Super-light concrete with pearl-chains

Author:

Hertz K.D.1

Affiliation:

1. Technical University of Denmark

Abstract

The paper presents a new technology invented by the author by means of which it is possible to create very light concrete structures. The new super-light structures are resource-saving in terms of consumption of raw materials and energy for production and transport, and the cost is often less than half that of similar structures in concrete and steel. They are heat-insulating, fire-resistant and they open up the possibility for large spans and the creation of advanced shapes. Fields of application include roofs, shells, beams, columns, walls, façades, offshore structures, tunnels and structures with large spans for bridges, factories, warehouses, shopping centres, car parks, assembly and sports halls and so on. The new structures are new applications for well-understood components, so it is not necessary to prove that they are possible. However, the paper presents tests that were made to illustrate the applicability and to reveal any potential hidden problems. Continuing research will aim to reduce the weight and thereby the resource consumption further. In addition, the paper introduces pearl-chain reinforcement, which is a new principle for creating compression and tension zones. A small number of simple mass-produced prefabricated components are used to establish compression and tension zones for optimised or advanced shapes in super-light structures. Furthermore, the principle provides new options for prestressing light aggregate concrete structures in general. Pearl-chain reinforcement is self-supporting. It is visible and open for inspection before being cast into a structure, and it can support moulds for the structure, reducing the need for scaffolding. Stable meshes of pearl-chain reinforcement are advantageous for both large-scale structures, such as bridges, girders, shells and domes, and for small-scale applications, such as façade elements, crash barriers and secondary structures. One special small-scale application of the principle is in frame building, where super-light frames with pearl-chain-reinforced components have some of the same advantages as timber-frame structures with regard to stability, heat insulation, economy and simple erection processes, but without the disadvantages of fire and rot.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3