Anchorage of naturally corroded bars in reinforced concrete structures

Author:

Tahershamsi Mohammad1,Zandi Kamyab2,Lundgren Karin3,Plos Mario4

Affiliation:

1. MSc-Doctoral candidate, Department of Civil and Environmental Engineering, Division of Structural Engineering, Concrete Structures, Chalmers University of Technology, Gothenburg, Sweden

2. PhD Researcher, Materials Group, CBI Swedish Cement and Concrete Research Institute, Borås, Sweden; Research Assistant, Department of Civil and Environmental Engineering, Division of Structural Engineering, Concrete Structures, Chalmers University of Technology, Gothenburg, Sweden

3. Professor, Department of Civil and Environmental Engineering, Division of Structural Engineering, Concrete Structures, Chalmers University of Technology, Gothenburg, Sweden

4. Associate Professor, Department of Civil and Environmental Engineering, Division of Structural Engineering, Concrete Structures, Chalmers University of Technology, Gothenburg, Sweden

Abstract

The bond properties of naturally corroded reinforced concrete members were experimentally investigated. Thirteen specimens were taken from the northern edge beam of Stallbacka Bridge, a girder bridge in Sweden. The specimens exhibited different levels of corrosion-induced damage, including concrete cracking and cover spalling. The damage was carefully documented and the specimens were tested in suspended four-point bending tests. Their general behaviour was monitored through measurements of applied loads and vertical deflections. At the same time, the local anchorage behaviour was recorded at the end regions. The test results showed around 5% lower anchorage capacity for damaged specimens compared with the reference ones. The residual bond strength was studied with respect to the observed damage. These tests, and artificial corrosion results from the literature, indicate that the bond strength decreased with increasing maximum splitting crack widths. However, the bond capacity was higher for the naturally corroded specimens. The results thus show an obvious difference between artificial and natural corrosion, and furthermore indicate that the provisions given in fib Model Code 2010 are on the safe side. These test results contribute to further knowledge regarding the structural behaviour of corroded reinforced concrete structures. predict the crack extension resistance curve of concrete with reasonable accuracy.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3