Affiliation:
1. MPhil Student, Department of Civil Engineering, The University of Hong Kong, Hong Kong
2. Senior Lecturer, School of Civil Engineering, The University of Queensland, Brisbane, Australia
Abstract
It has been demonstrated that high-strength concrete (HSC) is able to improve the strength-to-weight ratio of reinforced concrete columns and maximise the usable areas of tall buildings. However, closely spaced transverse reinforcement needs to be installed to provide stronger confinement for averting brittle failure of HSC. To resolve the problem, double-skinned concrete-filled-steel-tubular (CFST) columns have been advocated, which eliminates the steel congestion problem for better concrete placing and reduces the concrete arching action thus providing a more uniform confining pressure. Despite these advantages, a major shortcoming of double-skinned CFST columns is that imperfect interface bonding occurs in the elastic stage that reduces elastic strength and stiffness. Thus, the authors proposed to adopt external confinement to restrict the lateral dilation of the outer tube of double-skinned CFST columns. To verify the effectiveness of the proposed external rings, a total of 20 double-skinned normal- and high-strength CFST columns were tested. From the test results, it was observed that the stiffness, axial load-carrying capacity and ductility of ring-confined double-skinned CFST columns were significantly higher than the unconfined columns.
Subject
General Materials Science,Building and Construction,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献