Pulsed plasma polymerisation of carvone: characterisations and antibacterial properties

Author:

Masood Asad1,Ahmed Naeem1,Mohd Razip Wee Mohd Farhanulhakim1,Haniff Muhammad Aniq Shazni Mohammad1,Mahmoudi Ebrahim2,Patra Anuttam3,Siow Kim S1

Affiliation:

1. Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Malaysia

2. Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Malaysia

3. Chemistry of Interfaces Group, Luleå University of Technology, Luleå, Sweden

Abstract

The production of suitable coatings with excellent antibacterial performance has now become a viable technique for enhancing the functional qualities of various biomedical materials. Here, pulsed plasma polymerisation was used to produce an antibacterial coating from the carvone oil of the spearmint plant. The coating films have adjustable chemical and physical properties based on the deposition parameter – that is, duty cycle (DC). The static water contact angle (WCA) values of pulsed wave (PW) plasma-polymerised carvone (ppCar) increase with the increase in DC. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy showed that the molecular structure of carvone is less fragmented, retaining moieties associated with C–O and C=O when the DC is reduced. These C–O and C=O moieties likely reduced the measured static WCA. This surface chemical composition with predominantly C–O and C=O also showed a stronger bactericidal effect, based on the biofilm assay with bacteria (Escherichia coli and Staphylococcus aureus), compared with those coatings with C–C and C–H produced at a higher DC. As shown by the atomic force microscopy images, a lower DC resulted in smoother and more homogeneous coatings than those produced with a higher DC, while field emission scanning electron microscopy images show that when E. coli and S. aureus membranes were attached to PW ppCar, they ruptured and distorted with a pore created and that these distortions and ruptures increased as the DC was reduced.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3