Dynamic nanomechanical behaviour of healthy and OI human cortical bone

Author:

Gu Chunju1,Katti Dinesh R.2,Katti Kalpana S.3

Affiliation:

1. Research Assistant, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, USA

2. Professor, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, USA

3. University Distinguished Professor, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, USA

Abstract

Viscoelasticity of bone has been of interest for many years because this time-dependent mechanical property relates to the fracture risk of bone under dynamic loading. Several factors have been claimed to contribute to this property including the nature of different constituents of bone and their interactions, as well as moisture content. In the present study, intact normal human cortical bone was demineralised, and molecular structures were identified using infrared spectroscopy. Osteogenesis imperfecta (OI) human cortical bone was also selected for comparison because OI bone has severe defects in collagen molecules, while its mineral phase is almost identical to that of normal bone. The dynamic nanomechanical behaviours of the intact, demineralised and OI human cortical bone specimens were examined using dynamic nanoindentation. Loss tangent, tan δ, was considered as a measure of the degree of the viscoelastic response. Variable dynamic load tests show that the viscoelastic responses of all bone specimens increase with frequency. With demineralisation, bone specimens show greater viscoelastic response than intact specimens. OI bone shows similar viscoelastic response as normal bone. Results suggest that the viscoelasticity of bone is mostly attributable to the mineral phase. The present study adds to the understanding of the viscoelastic response of bone material. In addition, the dynamic mechanical properties of OI bone are firstly reported here.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3