Carbon coating of electrode materials for lithium-ion batteries

Author:

Yaroslavtsev Andrey B1ORCID,Stenina Irina A2ORCID

Affiliation:

1. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; Basic Department of Inorganic Chemistry and Materials Science, National Research University Higher School of Economics, Moscow, Russia

2. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Abstract

Lithium-ion batteries have become one of the most popular energy sources for portable devices, cordless tools, electric vehicles and so on. Their operating parameters are mostly determined by the properties of the anode material and, to a greater extent, the cathode material. Even the most promising electrode materials have disadvantages, such as large changes in the unit cell volume during the charge–discharge cycles, resulting in the electrode disintegration and capacity fading or low ionic or electronic conductivities. To overcome these shortcomings (destruction of materials or slow lithium diffusion), similar approaches are used, including the use of nanosize materials and the formation of composite materials with various conductive additives, the most popular of which is carbon. A small particle size causes less damage and minimises the diffusion path length, and carbon behaves as a buffer, thereby eliminating volume changes and providing a more stable contact between particles. Moreover, carbon coating of nanoparticles provides fast lithium diffusion along the interfaces. In this review, the authors summarised the recent research progress on carbon composites used in lithium-ion batteries. The theoretical foundations of electrochemical processes and some typical examples of the practical application of such composites are also outlined.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3