Effect of negative excess pore-water pressure on the stability of excavated slopes

Author:

Ghadrdan M.1ORCID,Shaghaghi T.1ORCID,Tolooiyan A.2ORCID

Affiliation:

1. Geotechnical and Hydrogeological Engineering Research Group (GHERG), Federation University Australia, Churchill, VIC, Australia.

2. School of Engineering, College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia.

Abstract

Generation of negative excess pore-water pressure (NEPWP) due to the excavation of saturated soils under undrained conditions and the dissipation that follows over time may result in different short- and long-term slope instability. The NEPWP generated due to excavation gradually decreases towards equilibrium or, in some cases, steady seepage. Hence, total pore-water pressures immediately after excavation are lower than the ultimate equilibrium values, leading to a reduction of the average effective stresses in the slope and subsequently threatening stability in the long term. In this research study, the stability of three benchmark civil and mining excavations has been studied, considering the effects of the generation and dissipation of NEPWP. A series of numerical simulations are conducted to determine the role of in situ stresses and time in NEPWP dissipation as well as the consequent effects on the stability of the excavated slopes. To conduct a realistic time-dependent transient analysis, fully coupled hydro-geomechanical formulation has been employed. Results show that in general, higher removal of stress levels lead to higher NEPWP generation and higher factor of safety values in the short term. Thereafter, the dissipation of NEPWP threatens the long-term stability of the excavation.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3