Developing finger joint biomechanics through a dynamic hand model

Author:

Yegin Vedat1,Onat Mustafa2

Affiliation:

1. Department of Mechanical Engineering, Iskenderun Technical University, Hatay, Turkey

2. Department of Electrical and Electronics Engineering, Marmara University, Istanbul, Turkey

Abstract

The human hand is one of the main limbs in maintaining daily life activities. It functions as an interface between the outside world and the brain, such as in positioning, moving, touching, feeling and grasping objects. It can perform fine motor skills precisely, thanks to its high degree of freedom and its complex and flexible structure. This study proposes a dynamic human hand model with 15 degrees of freedom for rehabilitation, reflecting the aforesaid abilities with significant accuracy. For the finger biomechanics design, finger joint lengths, angular workspace ranges and joint torques were determined experimentally. Moreover, joint torques during finger extension/flexion movements were calculated through SolidWorks motion analysis and Ansys static structural analysis. To identify finger joint relationships, the workspaces for all fingers were computed and visualized during flexion/extension movements. Unlike the literature, the hand model includes a biomechanics computational analysis approach that makes it easy to adapt to hand models. The search demonstrates that using optimum comparative data for design parameters and finger workspace ranges yields a cost-effective result for manufacturing a precise hand robot.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3