Thermo-poro-mechanical analysis of landslides: from creeping behaviour to catastrophic failure

Author:

Alonso E. E.1,Zervos A.2,Pinyol N. M.13

Affiliation:

1. Department of Geotechnical Engineering and Geosciences, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.

2. Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.

3. Centre Internacional de Metodes Numerics en Enginyeria, Universitat Politecnica de Catalunya (UPC), Barcelona, Spain.

Abstract

The scope of the paper encompasses planar and compound sliding motions, which may exhibit creeping behaviour during a certain period but may evolve to a very rapid motion. Thermo-mechanical interactions, at the scale of the sliding surface, are accepted as a critical aspect to explain these motion phases and their relationship. The sliding kinetics and global equilibrium are described at a large scale and the evolving shearing strength at the sliding surface derives from the local analysis of the shearing band and its vicinity. Pore pressures, temperatures and related variables are calculated by resolving a set of balance equations. The paper describes the transition from creeping motions to a rapid event. Results are found in terms of dimensionless numbers. Calculation of the slide evolution requires special numerical techniques described in the paper. Band permeability is found to be the dominant property controlling the triggering of fast motions. The creeping stage and the eventual slide blow-up are intimately linked. This relationship is explored in the paper. The models presented can be readily used to back-analyse relevant case histories or, in principle, even to carry out predictive modelling, provided an adequate calibration is available for the material parameters.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3