Flame-retardant performance of phosphorylated furan-containing alkyd resins

Author:

Denis Maxinne1,Le Borgne Damien2,Sonnier Rodolphe3,Caillol Sylvain4,Negrell Claire4

Affiliation:

1. Institut Charles Gerhardt Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique and École Nationale Supérieure de Chimie de Montpellier, Montpellier, France; Lixol, Groupe Berkem, Blanquefort, France

2. Lixol, Groupe Berkem, Blanquefort, France

3. Polymers, Composites and Hybrids, IMT Mines Alès, Alès, France

4. Institut Charles Gerhardt Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique and École Nationale Supérieure de Chimie de Montpellier, Montpellier, France

Abstract

Over the past decade, with the emergence of environmental and human health concerns, research has focused on developing new solutions to replace fossil resources with more sustainable biobased resources. Furan derivatives can be obtained from plants, and their structures provide high resistance to high temperatures. Furan derivatives have been functionalized with phosphorus (P) to increase their fire-resistance properties. Thus, a new biobased bisfuran containing nitrogen and phosphorus (diethyl (((3-((((diethoxyphosphoryl)(hydroxy)(4-(hydroxymethyl)cyclopenta-1,3-dien-1-yl)methyl)amino)methyl)benzyl)amino)(hydroxy)(4-(hydroxymethyl)cyclopenta-1,3-dien-1-yl)methyl)phosphonate (HMF-MXDA-DEP)) was synthesized and used for the first time in polymerization to develop alkyd resins. The flame-retardant (FR) properties of these resins were studied. Alkyd resins are generally used as a binder in paint or varnish formulations. The use of a reactive FR during the polycondensation reaction of alkyd resins makes it possible to form covalent bonds and offer better durability over time. The impact of HMF-MXDA-DEP on film properties such as drying time, flexibility, adhesion and color was studied, and the thermal and FR properties were evaluated by differential scanning calorimetry, thermogravimetric analysis and pyrolysis–combustion flow calorimetry. Increased thermal stability and good FR properties of alkyd resins were demonstrated. In the cone calorimeter test, the lowest peak heat release rate (pHRR) was obtained with a coating of 2 wt% phosphorus HMF-MXDA-DEP on wood, and a 49% decrease in pHRR compared with that of FR-free alkyd resins was demonstrated.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Polymers and Plastics,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3