Affiliation:
1. Department of Mechanical and Structural Engineering, University of Trento, Trento, Italy
Abstract
This paper investigates the mechanical characterisation of a joint, suitable for different configurations within a heavy timber frame, consisting of a wooden element connected to a steel stub by means of an end-plate and glued-in steel rods. This connection system has some interesting properties in terms of mechanical performance, versatility and prefabrication. An analytical model to predict the joint response in terms of its key parameters (e.g. failure mode, ultimate resistance, stiffness and rotation capacity) is proposed and validated through an extensive experimental programme. The component method, originally proposed for semi-rigid joints in steel frameworks, is adapted in order to set up a feasible general model for steel–timber joints, enabling application of the capacity design approach and offering the required ductility for applications in seismic zones. The tests carried out indicate satisfactory agreement between theoretical and experimental results: the reliable prediction of joint failure modes allows design of moment-resistant connections that can sustain high plastic deformation without brittle rupture, with a remarkable degree of global ductility and energy dissipation under alternate loading.
Subject
Building and Construction,Civil and Structural Engineering
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献