Enhancing self-healing properties of engineered cementitious composites through the application of super-sulfated cement

Author:

Zokaei Shahin1,Siad Hocine1,Lachemi Mohamed1,Mahmoodi Obaid1,Şahmaran Mustafa2

Affiliation:

1. Department of Civil Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada

2. Department of Civil Engineering, Hacettepe University, Ankara, Türkiye

Abstract

To date, no prior research has addressed the self-healing performance of engineered cementitious composites (ECC) prepared with super-sulfated cement (SSC), despite its potential to reduce carbon emissions compared to Portland cement (OPC). This paper addresses this significant research gap in the literature by exploring the influence of SSC on the recovery ability of pre-cracked ECC samples. In addition to the mechanical characterization at the sound state, an exhaustive investigation was undertaken to comprehensively assess the self-healing ability of flexural strengths, deflections, ultrasonic pulse velocity (UPV), and rapid chloride permeability (RCPT) of preloaded SSC-based ECCs. Furthermore, scanning electron microscopy (SEM), coupled with energy-dispersive X-ray (EDX) was employed to evaluate the microstructural changes and development of self-healing products within the microcracks of SSC mixtures prepared with various amounts of FA. The findings indicated that SSC-based ECC, while maintaining comparable mechanical and ductility properties, exhibited significant improvements in the recovery rates of ECC, reaching more than 27%, 7%, and 76% for flexural strength, UPV, and RCPT, respectively, compared to the OPC-based control ECC. The microstructural SEM-EDS results confirmed the enhanced precipitation of ettringite as a new self-healing product related to the inclusion of SSC in ECCs, along with the conventional C-S-H/C-A-S-H gels.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3