A comparative study of impact effect of composite cylinders and type IV pressure vessels

Author:

Farhood Naseer H1ORCID,Karuppanan Saravanan2,Ya Hamdan H2,Abdul-Lateef Wisam Essmat1

Affiliation:

1. Department of Electromechanical Engineering, University of Technology, Baghdad, Iraq

2. Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar, Malaysia

Abstract

Generally, composites are sensitive to transverse impact loading because there is no through-thickness reinforcement for these materials. Specifically, type IV composite pressure vessels and cylinders are more susceptible under impact loading because of the presence of a plastic liner. The main challenges related to the existing composite pressure vessel materials are low toughness, low damage tolerance and high cost. Fiber hybridization is one of the active strategies employed to toughen composites and improve impact damage resistance. Therefore, in this work, the low-velocity impact resistance and induced damage severity of carbon–basalt/epoxy hybrid composites were experimentally studied on different cylinders, under 100 J impact energy. The potential of these new hybrid composites was analyzed for type IV pressure vessels. Composite cylinders with eight cylindrical laminates of different stacking sequences and fiber content ratios were fabricated through the filament-winding technique. Damage characterization was carried out using the scanning electron microscopy technique for both composite cylinders and pressure vessels. The results indicated that basalt/epoxy samples exhibited better impact resistance, energy absorption and lower damage severity than carbon/epoxy samples for both composite cylinders and type IV pressure vessels. Moreover, hybrid composite pressure vessels exhibited better impact performance compared with the pure carbon/epoxy vessel.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3