Affiliation:
1. Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, India
Abstract
The incidence of bone-related disorders is abruptly increasing worldwide, and the current therapies available are not sufficient to fulfill the growing demands of patients. Porous three-dimensional (3D) structures cast in combination with ceramics and polymers, with an intention to mimic native bone tissues, are gaining importance because of their better physicochemical and biological activities. The purpose of this study is to prepare a porous scaffold using Luffa cylindrica (LC) as a template coated with hydroxyapatite and gelatin. Guar gum (GG) was used as a binder, and hydroxyapatite powder was added to slurry of 10% gelatin and 1% GG in which pieces of LC were dipped followed by sintering at 900°C. The fabricated scaffolds (LC-GG) were analyzed by using different characterization techniques along with evaluation of porosity and water retention ability. The results revealed that the as-formed scaffolds have 70% porosity with more than 90% water retention ability. The degree of spreading of lymphocytes over the scaffold surface was less in comparison with that of the control, which showed the immunocompatibility of the fabricated scaffold. Based on the aforementioned findings, it is assumed that the synthesized porous structures can suitably be used for biomedical applications.
Subject
General Engineering,Biomaterials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献